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I. INTRODUCTION

Finite array analysis is useful both for determinating the
characteristics of finite size arrays and also for determining edge
effects for elements close to or at the edge of very large arrays.
In this report the solution to the finite array problem is expressed

in terms of an aperture half-space admittance matrix and coupling

coefficients (scattering parameters) between elements of the array.
The problem of calculating the mutual coupling between aper-
tures in a perfectly conducting ground plane previously has been
studied by other authors [1-7]. Borgiotti [1l] obtained an expression
for the mutual admittance between two identical radiating apertures
in the form of a Fourier transform of a function strictly related
to the power radiation pattern of the element.
In the first of two papers [2-3], Mailloux found the near field
coupling between two collinear open-ended waveguide slots by formu- | 4
lating the problem as a set of simultaneous integral equations and

solving the resulting equations approximately by expanding the aper-

ture field in a Fourier series. In the second paper, Mailloux found

the near field coupling between two closely spaced open-ended square
waveguide glots by a first-order analysis which is based on the
method of moments using a single-mode approximation to the aperture
field. He also gave an improved first-order analysis which uses a
higher order mode solution.

A paper by Cha and Hsiao [4] and dissertation by Hidayet [5]

treated the finite rectangular waveguide array problem, while papers
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by Steyskal [6] and Bailey and Bostian [7] dealt with finite circular
waveguide arrays. Steyskal's method is similar to the one used in this
report. He found the scattering matrix for a finite circular waveguide
array by using two dominant orthogonal modes as expansion functions in
a method of moments solution.

Formulas for the computation of the aperture half-space admit-
tance and scattering matrices of a finite planar rectangular waveguide
array are derived in this report. The procedure assumes a cosine
aperture electric field. For apertures that are close together the
normal quadruple half-space admittance integral is analytically reduced

to single integrals which are then evaluated numerically. For apertures

farther apart, the quadruple half-space admittance integral is analytically

reduced to double integrals which are evaluated numerically.

The general theory of solution is an extension of that presented
in a previous paper [8]. The basic procedure is an application of the
method of moments to an integral equation formulation of the problem.
The unknowns to be determined are the equivalent magnetic current coef-
ficients. The magnetic current is equal to the tangential electric
field in the aperture regions, rotated 90°. The Topelitz property of
the admittance matrices for the linear and rectangular lattice arrays
is utilized when solving for the unknown magnetic current coefficients.
The computer program which uses the solution derived in this report

will be given in a subsequent report [15].




II. STATEMENT OF THE PROBLEM

Figure 1 shows the problem to be considered and defines the
coordinates and parameters to be used. The infinitely conducting
plate covers the entire z = 0 plane except for the apertures which
are rectangular in shape with side lengths a' and b' in the x and y
directions, respectively. The feeding waveguides have inside side
lengths of a and b in the x and y directions, respectively. Note
that all feeding waveguides have the same dimensions (a,b) and all
the apertures have the same dimensions (a',b'). Also z is less than
zero in the waveguide region and z is greater than zero in the half-
space region. The excitations of the waveguides are sources which
produce the dominant mode wave traveling toward the apertures. The
waveguides are assumed terminated in matched loads when viewed from
the aperture.

We first consider the problem of a single waveguide-fed aper-
ture radiating into a half-space region (see Fig. 2a). The equivalence
principle [9, Sec. 3-5] is used to divide this problem into two separate
regions as follows (see Fig. 2b). The aperture is covered by an elec-
tric conductor. The fields in the waveguide region are produced by

the impressed sources i}mp' Mimp

Ll

, and the equivalent magnetic current M

M=nXxE (1)

over the aperture region with the aperture covered by an electric

conductor. The fields in the half-space region are produced by the

equivalent magnetic current, -M, with the aperture covered by an
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Fig. 2. A single waveguide-fed aperture radiating into half-space
bounded by an electric conductor.
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electric conductor. The condition that the equivalent magnetic current
in the waveguide region is +M and in the half-space region ~M ensures
that the tangential component of electric field is continuous across
the aperture.

Another necessary boundary condition is the continuity of the
tangential component of magnetic field across the aperture. The tan-
gential magnetic field over the aperture on the waveguide side, H:g,

is equal to

wg _ yimp wg
el rEE @
where
E:mp is the tangential magnetic field due to impressed

sources

E:g(g) is the tangential magnetic field due to the

equivalent magnetic source M.

On the half-space side of the aperture we have

hs hs hs
Be "B G0 = -1 . (3)

The last equality in (3) is a consequence of the linearity of the

Hhs operator. Note that Himp’ ng(M), and Hhs(M) are all computed

~t ~t g e s SRR

with an electric conductor covering the aperture. The true solution

wg hs
is obtained when Et of (2) equals ﬂt of (3) or

wg hs I imp
HOQD + HO) = -8 . (4)

This ‘s the basic operator equation for determining the equivalent

magnetic current M.

AR a4 i AN N




Although (4) was derived for a single waveguide in a ground
plane, it applies equally well for an N-element waveguide array. In
this case the waveguide region is considered to include all of the
waveguides and the half-space region is as before. For the multiple
aperture case, (4) becomes

N
BB + ) ey = - g™ ()
¢ j=1 i i
Lo 3,2, .
In (5), ﬂ; is the equivalent magnetic current for the jth aperture.
The subscript i denotes magnetic field evaluation in the ith aperture.
Let

W o= v, M (6)

where V., is a complex constant to be determined and M, is an expan-

] o]
sion function to be specified. Substituting (6) into (5), we obtain

N
v, 8wy + ) v, B" u) = - ul™ (7
i3, o " o e ~t,

i=1,2,...,N.

Next, define the symmetric product <A,B> of two vectors A and B by

<A,B> = ” A Bds (8)

where the integral is over all aperture regions. Also define a set
of testing functions {Hi’ i=1,2,...,N} which may or may not be equal
to the expansion functions. Then, taking the symmetric product of (7)

with the testing funcion Hi’ we obtain




v, <W P (M ¥ . o ol G,
1",

P i,ng(M )> + Z v, <W
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Solution of this set of linear ¢quations determines the coefficients

Vj and, therefore, the equivalent magnetic current E?.

' Equation (9) can be rewritten in matrix notation as follows:

Define an admittance matrix for the waveguide regions as

Wg
) = 15, <¥,, He, M)y (10)
where Gij is the Kronecker-delta function
1 1=
Gij = (11)
0 18]
and for the half-space region as
(Y35) = [y, HE204)>] 0 12)
A T
§
The minus signs are placed in (10) and (12) on the basis of power ;
considerations. Define a source vector
]
Fimp _ imp
(<w,, H £ >lyx1 (13)
. and a coefficient vector
>
V= [Ville o (14)

The resulting matrix equation which is equivalent to (9) is

(Y8 + Y% o TiWP




g

- ﬁ-vjl.ptm

0,4

The physical interpretation of (15) is that of two generalized
admittance networks, [YWB] and [Yhs], in parallel with the current
source fimp. By inverting (15), we obtain the resulting voltage vector

V which is the vector of coefficients which determines M

V= [Y¥8 4+ P57t FimP (16)

The expansion (Ei) and testing (Hi) functions are defined as

T
Heowi s ExPi(x,y) cos —5 (x-xi) (17)
where
X, - a'/2<x<xi + a'/2
= _2_ - ' ]
P, (x,y) \/a.b' Yy mBlS Iy £ gy b2 (18)
0 all other x,y -

The equivalent magnetic current over the ith aperture region is

i
Q‘ Vi Ml
b
= - ExViPi(x,y) cos 5 (x-xi). (19)

The electric field in the ith aperture is
i
Ei = EyviPi(x,y) cos 5 (x—xi) 5 (20)

We choose the minus sign in the magnetic current expression (19) to
avoid an explicit minus sign in our expression for aperture electric

field (20).
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ITI. ADMITTANCE FORMULATION

a) Determination of Y:g -

To evaluate the aperture admittance (10) in the waveguide region,

we consider a single expansion function M  on the z = 0 plane in the

i

ith waveguide region. The tangential field produced by can be ex-

%
pressed in modal form as [9, Sec. 8-1]
Y,.Z
wg g k
B (M EAik e

(21)

Y, 2

wg oz k
H (M) EAikYke A

where Aik are modal amplitudes, Yy are modal propagation constants,
Yk are modal characteristic admittances, and Ek are normalized modal

vectors. The modal vector orthogonality relationship is

” 84 ' gy ds T i
guide SR S F

where the integration is over the waveguide cross section. At z = 0,

we have

4 =g, X B Lohgy By X8y - s

z=0 k i

Multiply each side of this equation scalarly by - S Ed and inte-

grate over the waveguide cross section obtaining
IJ Hi ‘u, X Eﬂ ds = E Aik II (2c X Ek) 0(}_1z X Ej) ds . (24)
guide guide

By orthogonality (22), all terms of the summation are zero except the

j=k term. Hence
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apert.
We have replaced the integral over the waveguide cross section by one
over the aperture since gi exists only in the aperture region. Sub-
stituting the second equation of (21) evaluated at z = 0 into (10),
we obtain the diagonal elements of the waveguide admittance matrix,
5t B
e .
Yij 61j E AikYk I! Ei v, X & ds . (26)
apert.
Since Ei = Hi' (26) becomes
ey Tl v . (27)
ij ij 4 ik 'k
The set & of modes for the rectangular waveguide is split
into a set »{E of TE modes given by [9, Equations (8-34), (3-86),
and (3-89) and Section 4-3]
TE 5 EmEn n mmx nny
S (L +1) © 2 5 gy e ey
(mb)“© + (na)
~-u 2 sin T cos __X ] (28)

~y a a

m = 0’1’2""’Lh

m+n#0
n= 0,1,2,...,Ln
1 m=20
SN
2 m=1,2,...

and a set [0 of T modes given by

e A LN S i il
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™ ’ ab m mrx nmy
e i = 2 [u — cos — sin
~m+(n 1)1.m (mb)2 + (na)2 ~X a a b |
n mmx oy
+u b sin —a 08 ] (29)

m = 1,2,3,...Lm

n= 1,2,3,...,Ln

Note that equations (28) and (29) are valid only when the origin is at
a corner of the waveguide.

Substituting (17), (28), and (29) into (25), we obtain

TE TE
At “ Mytgp Xy ds
apert.

mm zemen
i kia aa' bb' I(m,n) (30)

m=0,1,2,...,L
k = min(L _+1) - mén # 0
n-0,1,2,...,Ln

and

- :::\’ aa'zbb' I(mon) (31)

ﬂ-1,2.3, s e ’Lm
k = n+(n-1)Ln
n-1,2,3,...,Ln

where

K, = EH? 4 @12 (32)
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(b+b')/2 (at+a')/2
I(m,n) = dy cos E%Z dx cos ﬁ% (x-a/2) sin !EE
(b-b*)/2 (a-a')/2
sin Eﬂkl
2b' 1 mm n1m mma' 2b
s m2 . sinTcos 3 €08 T o (33)
g =
a a
TE ™ :
Note that the introduction of & and & has split the coefficients
2
TE ™ ! 1
(25) into Aik and Aik' If (a/a' = m) in (33), (cos m;z /(EE - a'2)) is

to be replaced by its limit (—n82/4). If n is zero in (33), (sin(0)/0)
is to be replaced by unity.

The characteristic admittances Yi of a rectangular waveguide with

relative dielectric constant €. and relative permeability unity are

TE

classified as either TE admittances Yi

or TM admittances YEM given by

[9, Section 4-3],

Kk
S e e 0
- (5 CH lcvé:-<ki
TE _ 34
(34)
1 ky 2
e o iRl

m-0,1,2,...,Lm |
i = mn(L_+1) mtn # 0
m
n-0,1,2,...,Ln

and
Er {
o Y S
LA r i |
1,2 |
Giﬁ -6y
™
i 1 er

k£;>k1

=

k
V e (—‘})2

1 - M(n-l)L m-1,2,3,....Lm
m
ﬂ'1,2,3,. . .’Ln

S o . ‘n.“n‘.__..-.‘...............-uuu-n--llliiillllli
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In (34) and (35), n is the characteristic impedance of free space,
k is the free space wave number, and k1 is the cut-off wave number

given by (32).

b) Determination of Y:; -

Since the apertures are covered by conductors, the z = 0 plane is
a complete conducting plane and image theory applies. The magnetic
current expansion functions are on the surface of the z = 0 plane.
Their images are equal to them and are also on the z = 0 plane. The
result is that [Yhs] is the admittance matrix obtained using expansion
functions Zgj radiating into free space everywhere. Therefore (12)

can be written as

hs

fs
Yij = - 2<wi, Ht (Mj)> (36)

i
where g:s(ﬁj) is the magnetic field in the ith aperture region produced
i

by Ed radiating into free space. The magnetic field g:s (Ej) can be
i

expressed in terms of an electric vector potential F . and a magnetic

ij
scalar potential ¢ij as [10]
B M) ~-Jul, ~T¢ (37)
“t, %3 =13 ~ < %3
where
-jk|z-z'|
€ e
By " on ” - T U (38)
apert.
-Jk|z-r'|
1 e
¢ij = m II (.')j = £, ds (39)
apert.
VeM
PR (40)




where r and E' are respectively the vectors to the field and source
points, w is the angular frequency, € is the permittivity of free
space, U is the permeability of free space,and k is the free space
propagation constant. Substituting (37) into (36) and using (8), we
obtain
) W (JuF,, +9 0, )ds . (41)
ij ~i ~ij ~ "ij
apert.

Because of the identity

apert. apert, apert.

hs
Yij 2 jw II (gij W+ ¢ij pi)ds (43)
apert.
where
oty Ei
pi = & jw % (44)
Next define Y1 b
15 Y
Y. =23 Pooa W (45)
ij (N} "ij o4 S
apert,

Substituting (17) into (45), we obtain

yi+b'/2 x1+a'/2 y,+b'/2 xj+a'/2
1 €
Yij = ;i%;r dy dx cos ﬁ%(x-xg dy' dx'cosﬁ%(x'—xj)G(x'-x,y'-y)
_' P _' _'
yy-b /2 x -a'/2 Yy b'/2 x,-a /2

(46)
where
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s

AV @02 + 51y
Gx! ~x, =3 = . (47)

\/(x'-x)2 + (y'-y)2

Consider
yi+b'/2 yj+b'/2

1, ') = I a5 |yt Gtxtan, o) (48)
yi-b'/2 yj—b'/2

Substituting the transformation y' = v+y into (48), we obtain
yi+b'/2 yj+b'/2-y
o4 (x'-x) = dy dv G(x"-x, Vv) . (49)

ij
yi-b'/Z yj-b'/2-y

Interchanging the order of integration, we obtain (see Fig. 3)

Y574 yi+b'/2
Iij(x'-x) = I dv G(x'-x, v) dy
yj—yi_b' yj-b'/Z-v
e P yyre'/2-v
+* I dv G(x'-x, v) I dy . (50)
yj-yi yi—b'/2
Consider
xi+a'/2 xj+a'/2
I1¥ = I dx cos - (x—x,) I dx' cos —+(x"-x )17, (x"-x). (51)
ij a' i a' 37713
xi-a'/z xj~a'/2

Substituting the transformation x' = u+x into (51), we obtain

' x.+a'/2 x,+a'/2-x
‘ * - z d I (x=x,) : d Tr(utx-x )17, (u) (52)
% 13 x cos 3 4 u cos -5 %) Ty ().

xi‘ﬂ'/z xj-a'/z-x

B L B N S B A S ARG b
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Interchanging the order of integration, we obtain

X=X x,+a'/2

. ;u 7. () : dx cos — (x=%,) cos = (wix~
13 13 os = 1 s o (utx—x

xj—xi-a' xj—a'/Z—u

j)

x —xi+a' x,+a'/2-u
y Al P AL 5
+ du Iij(u) dx cos 27 (x xi)cos 2’ (utx xj

xj-xi xi-a'/z

Substituting (50) and (53) into (46), we obtain

1 _ _jwe 1x

Yij T a'b' Iij'

2
Next define Yij by

2
Yij = 2jw JJ ¢ijpi ds.

apert.

Substituting (17) into (55), we obtain

yi+b'/2 x1+a'/2 yj+b'/2 xj+a'/2
v, - AT

3
wia'"b’ yi-b'/Z xi-a'/Z yj-b'/2 xj-a’/z

Substituting the transformations x' = u+x and y' = v+y into (56) and

interchanging the order of integration, we obtain

2 =in 2x
o | G 5. '8
wpa'“b'

where

).

ul T
dy dx sin ;T(x-xi) dy'| dx' sin ;T(x'-xj)G(x'-x,y'—y).

(56)

(57)

(53)

(54)

(55)
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X, =X x.+a'/2
2x = I idu Iy (u§ dx sin — (x-x ) sin (utx—x.)
13 ij | a' ' k|
xj—xi-a j-a /2-u
x,-x +a' x.+a'/2-u
s i il
+ I du ij(u) J dx sin~;7 (x-xi) sin 2 (u+x-xj). (58)
xj-xi xi-a'/Z

After a tedious but straightforward evaluation of two integrations for

each of the quadruple integrals Ii? and Iij’ we obtain
hs 1 2
L i Yij + YU
Y=y X x
e Af8 3 -
b =ver dv(K1+v)[ du G(u v) [ (K +K3u)cos (K +K u)sin a,]
L i s T
xj—x1+a'
+ J du G(u,v)[(K7-K3u)cos g% + (KB—KSu)sin E%]]
xj-xi
yj-y1+b xj xi "u L
+ dv(K6-v)[ I du G(u v)[(K u)cos + (K +Ksu)sin ;7]
b B G 5 B
x -x1+a'
mu mu
+ du G(u,v)[(ls-l(au)cos ar t (Kg-Kou)sin ;.—l]} (59)
x,=X

j i




where

o et e S Rl

2 : 2
K, = (- ;%—Ti)(xi-xj+a') cos [i% (e x)] + L a+ 2"'2)sin[£¥(xj-xi)]
a k" a
K, = (1- “2 ) cos [JL (x,-x.,)]
3 v k28,2 Gl PR |
K, = (1--;%—:5)(xi—xj+a') sin[i% (xj-xi)] - %r (1+ zﬂ'z)cos[i%{xj—xi)]
a k" a
K. = (1- ——EE—) sin [JL (x,~x,)]
5 k23,2 a’ 4

= e 1
K6 yj Yy +b

"2 2

K7 = (1- kz '2)(xj-xi+a') cos[i} (xj-xi)] - %r (1+ g 'Z)Sin[ﬁg(xj-xi)]
a ka
o e ey ST e )+ AL ok T
K8 kza'2) xj x,+a') sin[=; (xj Xy # kza'z cos[a,(xj-xi)].

Substituting the coordinate transformations u = p cos 6 and v = p sin 6

into (59) and integrating out the p variable, we obtain (see Fig. 4)

6
2
hs k
R {[ 401K, [K)L, (8) + KyLy(8) + K,L,(8) + KoL, (8]
6
1
1

(1)
+ [KZLS(O) + K3L7(6) + KAL6(9) + K5L8(6)]]

)

)
4
RS NOE SHORTAROBEENCY
3
(1D

+ [K7L5(0) - K3L7(6) + K8L6(0) .- KSLB(O)]]

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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Fig. 4. Rectangular - polar coordinate integration area.
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0
5
+ I de[K6[K2L1(e) + K3L3(e) + K,L,(0) + KL, (6)]
0
&
(II1)
- [KZLS(G) + KL, (0) + K4L6(6) + K Lg(0)]]

6
7
+ I d6[K6[K7L1(8) = K3L3(6) + K8L2(9) = K5L4(6)]

i
E
|

%
(IV)
- [KLg(8) = KL, (8) + KgLy(8) - K Lg(8)11) (68)
; where
M. () - M_(8) M.(8) - M, (8)
§ .- By 4
| L (®) =5 { M, () M, (0) v
M. (8) - M (6) M, (6) - M ()
1 2 3 4
L@« -3 et am (70)
/ P, (0)M. (B) - p, (B)M, (B) p, (O)M,(B) - p,(B)M, ()
: X o - FgVEUTY S S oy b
j Ly(8) = cos 6 {7" [ M, (0) t, (0)
M, (8) - M.(8) M.(8) - M, (8)
+ 12 243 -1} (71)
(MS(G)) (M6(9))
| 1 Po(OM (8) ~ p (OIM,(8)  p,(B)My(8) - p, (B)M, ()
; Lb(e) = cos 0{- E’[ “5(9) + M6(e) ]
'f (8) - M, (0) M, (8) - M (6)
-5 & e e e
(145(6)) (4 (8))
LS(G) = L3(6) tan 0 (73)
L6(9) = La(e) tan 0 (74)




Py (OM (B) - o1 (OM,(®) PO, (8) - pf(e>u4(e)]

e L
L.I(G) sin 8 cos 6{ > [ "5(‘” M6(6)

0, (BIM; (8) = P (BIMH(8) 0, (BIM,(8) - p, (B)M, (0)
+ +

2 2
(4,(6)) (M, (6))
M (8) - My(8) M (6) - M, (0)
+3 L -2y (75)
(M (6)) (M, (8))

2 2 2 2
Py (M) (®) - 03 (OIM)(®) 03 (I (8) - o) (OIM, (©)
Ms(e) M6(6)

L8(6) = sin 0 cos 6{- = [

L SO - o) 6 I -y (OH(E)

2 2
(MS(G)) (M6(9))
M, (6) - M, (6) M,(0) - M, (0)
$ § g l;; } (76)
(MS(G)) (M6(6))

39,(8) (¥ cos & - k)
e

M, (6) = an
1,(8) (5 cos 6 - k)

M2(6) =e (78)
i ~10,(6) (fT cos 6 + k)

M3( =e (79)
-jpl(e) (f-,- cos 6 + k)

M,.(B) = e (80)

Ms(0) = a—", cos 6 - k (81)

M (0) = a—”, cos 6 + k . (82)
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The variables pl(G) and pz(e) are respectively the lower and upper limits
of integration for the p integration in (59) after the transformations
u=pcos 6 and v = p sin O are used. They are dependent on the 6 vari-
able and the integration subarea. For instance, when integrating over

. region IV between 94 and 87 (see Fig. 4), pl(e) = (x wxi)/cos 6 and

i
pz(e) - (y:]-yi S 5 b')/sin 8.

IV. SINGULAR POINTS OF Yhs i

The integrand of (68) has removable singularities when ka' < m.

When either |cos 6 - 2a'| < € (small value) or |cos 6 + 2a'| < g, we

replace equations (69)-(76) by their respective limits. For an example, |

consider equation (69),

M, (8) - M, (9) : M (6) - M4(6)
MS(G) Ms(e)

et
Ll(G) 58 {

1p,(8) (I cos 6 - k) §p,(8) (77 cos B - k)
& _1 {e - g
2 ™
(;T‘COS 6 - k)

-10,(8) (;’"T cos 0 + k) -jpl(e)(:—, cos 6 + k)
e - 8
: ]

(g; cos 6 + k)

1f |£¥ cos 6 - k| < €, then by retaining the first three terms
of the Taylor series for the exponentials in the first half of (69),

we obtain

L,(6) = - % {1+ 3p,(8) (5 cos 6 - k) - %[pz(e)g’% con @ = ¥))*

-1 - 30,05 cos 6 - 1) + %[pl(e)(;",- cos 8 = K)]°

ﬁ% cos 6 - k

M3(6) - Ma(e)
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If we take the limit as ﬁ% cos O approaches k for the first half of

(83), we obtain

s | = 3 M (8) = M, (6)
M (6)

1f |£¥ cos 6 + k| < €, then by retaining the first three terms
of the Taylor series for the exponentials in the second half of (69),

we obtain

. M_(8) - M, (8)
Pl S G SRR T 4
Ll(e) > ( Ms(e) ) o ) (02(6) 01(9)). (85)

If we apply the preceding procedure to equations (70)-(76), we

obtain
M, (0) - M, (6)
o i il 4
L,(8) 5 (p,(8) - p (8) - o ( RO ) (86)
. P, (8)M;(8)-p, (B)M, (6) M, (8)-M, ()
X2 2 2 1 4 153 4
L,(8) = cos 6 {7(p5(0)-p5(0)) + A( ) + S(—=————)} (87)
3 &2 1 2 M6(6) 2 (M6(e))2
0, (8)M,(8) - p. (B)M, (0) M, (8)-M, ()
L, (6) = cos® {~ 1(02(6)—02(6)) -l( - 3 & 3 )+i( 2 - )} (88)
4 42 1 2 M6(6) 2 (M6(e))2
L (8) = Ly(8) tan 0 (89) ' ]
i
Lg(8) = 1,(0) tan 6 (90) '
AR N 03 (YN, (8) = 0F(B)M, ()
L7(6) = gin O cos O {-5(p2(e)-p1(e)) + 2( M6(e) )
: P, (0IM,(6) - p,(8)M, () M,(8) - M, (8)
f Pt bl et -y 2 Sy} (91)

2 3
(M, (8)) (M, (0))

e —— e w5 e = e




SHrm AT

L8(9) =

for |-1.-

L3(6) =

La(e)

Ls(8)

L6(0) -

L, (6)

Ls(e) =

for l-;"-.-
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1 9 (OIM, (8)-pF (BIM, (0)

sin 0 cos 8 {- 1(p(8) - p3(8)) - 5 7 ® )
0,(8)M,(8) - 0 (OIM, (8) M, (8) - M, ()
DRI e (92)
(1, (6)) (1, (6))
cos 6 - k| < g, and
M, (8) - M,(0)
- diek 2 1 3
1O = - 3 Coggm ) 3 0O - o) (93)

loz(e)Ml(e)-pl(e)Mz(e)

L M (8) -1, (8)

cos 8 {- 4 3 ) + (05 (8)-02 (80}
2 M. (6) 5 2 2 1
5 (,(8)) s
122 OM @O0 On©) 4 O, (e)) Sdrin
cos B -—- - (————) +(p, (8)-p
2 M (®) 2 2 1
a1 (0))
L3(6) tan 6 (96)
Lé(e) tan 6 97)
02 (8)M, (8)-02 (OIM, (8) D, (B)M, (8)-P, (BIM,(6)
sin 6 cos 6 {~ 5( M_(0) 3
5 (4(8))
M, (8) - M, (0)
+3 & 2 +3 (50 - py (O} (98)
(4.(8))
L PA(BIM, (8)=p] (B)M,(8)  p, ()M, (B)=p, (B)M, (6)
sin 6 cos 6 {- 5( M_(8) gl 1 2 )
5 (M5(8))
(6) - M,(8)
2 +d (o300 - 0} () (99)

(M (e))

cos B + k| < €.

R — " T—— . i —
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V. SCATTERTM. MATRIX - [S]

To determine the scattering parameters S for a waveguide fed

ij
aperture antenna array radiating into a half-space region, a source isplaced
in waveguide j and all waveguides are terminated in matched loads. Sij
relates the backward wave traveling toward the load in waveguide i to a
forward wave traveling toward the aperture in waveguide j. Besides the
field directly coupled from waveguide j to i, there are components due
to the radiated fields from the other apertures resulting from induced
aperture fields. Therefore, the scattering matrix explicitly identifies
the incident and reflected (or coupled) wave in every waveguide element.

Let a source which excites only the dominant mode be placed in

the jth equivalent waveguide region and represent the fields transverse

to the z-direction as

“Yo2 Yo2 wE . j
E (2) = (e e )e tESO
J
Y.z Y,z Y, 2
o o k
= - +
(e e ) e, Vj E Ajke e (100)
“Yo2 Yoz Yz
Iitj(z) Y (e ke 1y *E VJIZCAjkYke 4, %8 (101)

where the index o denotes the dominant mode, Yy are the modal propagation

constants, Ajk are the modal constants defined by (25), V, is the unknown

j
magnetic current coefficient determined by (15), and the Yk are modal
characteristic admittances defined by (34) and (35). The electric field

transverse to the z-direction in the ith equivalent waveguide region (no

impressed source) is
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i ) A e g . (102)

The scattering parameter Si is the ratio of the backward traveling

3

wave in waveguide i to the forward traveling wave excited by a source
in waveguide j. (It is assumed that only the dominant mode wave propa-

gates in the waveguide region.)

For i = j, we obtain from (100)

Sij = Vj Ajo e (103)

For i # j, we obtain from (100) and (102)

o B e N (104)
To determine Vi’ let us consider equations (15) and (13)
(Y8 + Y817 = FiOP (15)
where
Fimp _ imp . (13)
8 =Wy By Pl
3
ﬂ:mp is equal to the first term on the right side of (101) when z = 0.
]
When the aperture is covered by a conductor, the waveguide is terminated
by a conducting plane. According to image theory, the tangential magnetic
field at z = 0 is then just twice the incident wave, or
imp _
Et 2 Yo u, xe - (105)

3
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This is the Et used in (13) to evaluate the excitation vector fimp.
Hence, the components of the excitation vector are
imp o 2
Ij 2 Yo JJ Ej 22 x e ds
apert.
o Ajo if 1 =3 (106)
g if 143 . (107)
wg hs
For an equally spaced linear array, the matrix [Y ° + Y ] in

(15) is symmetric Toeplitz. Equation (15) is solved by a recursion
relation given by Zohar [11] which is based on an algorithm by Trench [12].

For a uniformly spaced rectangular array, the matrix [ng + Yhs]

in
(15) is symmetric block-Toeplitz. It is symmetric since we have used a
Galerkin solution (choosing expansion functions equal to the testing

functions). The block-Toeplitz property for a uniformly spaced rectangular

array is given by a matrix of the form

E: 7]
Yo Y1 o e Yn
Yl Yo Y1 i Yn—l
(Y] = (108)
Y Y b Lo Y
5 n n-1 o J

where Yo is that submatrix which defines the self-admittance of an ele-

ment of the array and Yli—jl’ i # j is that submatrix which defines the

mutual admittance between elements i and j of the array. An element

gl
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(submatrix) for the rectangular array is either the shortest row or
column of apertures in the x-y plane (see Fig. 5). A recursion rela-
tion which uses this block-Toeplitz symmetry property [13] is used to
solve (15).

For uniformly spaced isosceles triangular arrays, equation (15)
is solved by Gaussian elimination and LU decomposition [14].

It should be mentioned that all three methods used in solving
the linear, rectangular, and triangular arrays solve (15) directly

without computing the inverse matrix to [ng + YhS].

VI. SAMPLE COMPUTATIONS

A computer program using the formulas derived in the preceding
sections has been written. It is described and listed in a subsequent
report [15]. 1In this section we give some examples of the computations
that can be made using the general program.

Figure 6 shows the half-space admittance between two narrow slots
in echelon [Y?;] as the separation distance is varied while the angular
position is held fixed. This example tested the limiting expressions
derived in Section IV since for 6 = 0, (ﬁ% cos 6 - k) = 0. Our compu-
tations are compared to those of Borgiotti [1].

Figure 7 shows the scattering parameter 812 (amplitude and phase)
for two slots as the angular position of one is varied with respect to

the other while the separation distance is held fixed. Our computations

are compared to those of Mailloux [3].




Y |

- s e —— — —— ——

=]

Y, Yo Ys
[¥Y]=| Y2 Y Y2
Ys Y2 Y,
ELEMENT| ELEMENT2 ELEMENT3

—-— e o o o —
- - - — — -
— o —— — — —
-— - - ——— —

Fig. 5. Choice of elements for a block-Toeplitz
admittance matrix for a uniformly spaced

2 X 3 rectangular aperture array.
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2.5
2.0q
1.5
© 1.0-
i
o = X
= 0
-0.5-
X + 0
ki x B BORGIOTTI
—COMPUTER PROGRAM
"1-5 \J 1] B T T T T
g.0. 0.5 1.0 1.5 2.8 2.% 3.0 3.5

S/x

Fig. 6. The half-gpace admittance between two narrow slots in echelon
[Y?;] where a'/A = 0.5 and b'/A = 0.05. Our computed results
are compared to those calculated by Borgiotti [1].
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60

 BUPLITUDE S a1LL oux
—COMPUTER PROGRAM

COUPLING AMPLITUDE | Sz |
PHASE OF Si2 (DEGREES)

T T T T T -60
0 15 30 4s 60 i 90
ANGULAR POSITION @ (DEGREES)

Fig. 7. The scattering parameter 812 between two slots where
a/A = a'/A =b/A =b"/A = 0.6 and S/A = 0.9. Our computed
results are compared to those calculated by Mailloux [3].
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Figure 8 shows the half-space admittance between two slots in
echelon [Y?;] as the separation distance is varied while the angular
position is held fixed. Three different slot size cases are shown.

Figure 9 is the same as Figure 8 except that the angular posi-
tion of one slot with respect to the other is varied while the separa-
tion distance is held fixed.

Figure 10 shows the coupled power (20 log |811|) and phase of
Sil(i =2,3,..., 49) between a driven element and the other elements
of a 7 x 7 waveguide-fed aperture array with a rectangular lattice.

Figure 11 is the same as Figure 10 except that the lattice is

now isosceles triangular.

VII. DISCUSSION AND CONCLUSIONS

A method of computing the mutual coupling for an array of uni-
formly spaced rectangular waveguide-fed apertures radiating into a half-
space region has been developed. The array may have a rectangular lattice
or an isosceles triangular lattice. The formulation uses one expansion
function per aperture so as to be efficient when relatively large numbers
of apertures are concerned.

For calculating the half-gpace self admittance for a single
aperture an eight-point Gaussian quadrature numerical integration [16]
is performed on the single integrals in (68). The same method of solu-
tion is used for calculating the half-space mutual admittance for aper-

tures which are close together (centers of any two given apertures are

separated by less than 4a'). For greater aperture separations a six
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1.0 |
0.5-
:
x
0-
m 1
© |
o = 1
> !
"0..5‘
—1 O'L“'T T T T T
1.0 1.9 28 - 2.9 3.0 3.9
S/x

Fig. 8. The half-space admittance between two slots in echelon [Y?;]

where A = (a'/A = 1.0000, b'/A = 0.4761), B = (a'/A = 0.7500, | 4
b'/A = 0.3571), and C = (a'/A = 0.5000, b'/A = 0.2381).




3.5

MHOS X 10~

-1.5 — . —r- - —
0 15 30 4S5 60 75 90
ANGULAR POSITION @ (DEGREES)

Fig. 9. The half-space admittance between two slots in echelon
[¥}5] where S/A = 1.3, A = (a'/A = 1.00, b'/A = 0.4761),
B = (a'/A = 0.7500, b'/X = 0.3571), and C = (a'/) = 0.5000,
b'/A = 0,2381).
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point double numerical integration (six points in each variable for
a total of 36 points) is performed on the double integrals in (59).

It was found that for apertures which are close together, the
solution involving the single integrals of (68) was both more accurate
and efficient than the solution involving the double integrals of (59)
(an eight point single numerical integration versus a ten point double
numerical integration). As the separation distance between apertures
increased, the complexity of the solution involving single integrals,
specifically, the number of required subdivisions, was not necessary
and the solution involving double integrals proved just as accurate
and more efficient (a four point single numerical integration versus
a six point double numerical integration).

For finding the unknown coefficient vector v which is required
for determining the scattering matrix [S], the computer program uses
Zohar's algorithm [11] for the linear array case and Sinnott's algo-
rithm [13] for the rectangular array case. Both algorithms utilize
the Toeplitz symmetry properties of the admittance matrix [ng + Yhs].
Both algorithms are more efficient than inversion of [ng + Yhsl or even
a Gaussian elimination-LU decomposition algorithm for large N. (Zohar's
algorithm requires approximately 2N2 multiplications and divisions,
Sinnott's algorithm requires approximately (n+1)2N§ multiplications
and divisions where n+l is the number of blocks of the block-Toeplitz
admittance matrix and “p is the dimension of a block, Gaussian elimination-LU
decomposition requires N3/3 multiplications and divisions, and a solution

involving inversion of [Y“g + Yhsl requires N3 multiplications and divisions
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for the inverse and another N2 multiplications for finding V given the
inverse.) In addition to the efficiency of Zohar's and Sinnott's algo-
rithms, the storage requirements are considerably less than Gaussian
elimination-LU decomposition or inversion. (Zohar's algorithm requires
the storage of only one row of [ng + Yhs] while Sinnott's algorithm

hs]_)

If very large arrays are encountered, further simplification

requires storing one row of blocks of [ng +Y

of the program could be made by using the present formulation for aper-
tures which are close together, and using a far-field approximation where

the field is assumed constant over the aperture for the rest of the

apertures.
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